The largeset tokamak to date Jet was never designed to produce more energy - it was essentially a science experiment - It did however achieve ignition which was a great achievement.
Iter being build in France now is it's sucessor which should produce more energy than it consumes. This is still however not a power station. It's designed to be an Engineering experiment to answer questions about how you get the energy out, how you maintain and run such a power plant.
DEMO is planned to be the first demonstration fusion power plant. The Japanese lost to France on ITER so there's a good chance it will go there.
There are a number of other approaches being looked at - the Americans are big into inertial confinement (basically lasers)
http://en.wikipedia.o...al_confinement_fusion
and there is Z pinch too
http://en.wikipedia.org/wiki/Z-pinch
But these are quite a way behind tokamaks in development.
There are a few odd ball ones where you get small amounts of fusion but simply can never scale.
For example you can have "cold fusion" that is catalysed by muons if there were to be some sort of surprise breakthough from somewhere it could come from someone finding a source of muons sufficient to make it practical.
However as demonstrated by the JET/ITER/DEMO process even when you have the physics sorted you're talking 50 years to develop and certify commercial reactors based on that physics
It's also not going to be boundless free energy - reactors cost money to build and run and maintain in a safe manner and the energy must be transmitted etc. etc. etc.