Question Author
Yes, it was rather unfortunate, the first minute or so of the life of the Universe -- the first second, even! -- is full of all sort of different "epochs" (though how an epoch can last for a fraction of a second I don't know) and I doubt many people know them all of by heart, in order. I can't remember which physicist it was who said something like "If I could remember the names of all these particles I would have become a botanist." -- similar thing here!
Not quite, PP. The normal laws of Physics hold even during Inflation. Rather than any object moving faster than light, space expanded at a rate faster (many times faster!) than the speed of light! This doesn't break any laws at all, even though it might seem that way.
To see why, one common analogy is to think of waves against the shore. You can imagine that if the waves came in at some angle, then you should be able to see the point where the crest of the wave arrives at the beach, and define some speed for how fast that point moves along the beach. As the angle of approach changes, this speed will vary -- but, critically, it won't depend on the wave speed all that much at all, and in fact must always be equal to or greater than the wave speed (where it's equal in the case where the waves are travelling parallel to the shore). If the waves are coming in at an angle almost 90 degrees to the beach, then the point at which the wave first makes contact with the beack would zip from one side of the beach to the other almost instantly -- corresponding to a speed that approaches infinity! (You can calculate this using High-School Trigonometry... someone really ought to introduce problems like that at school. The speed goes as v/sin(x), where v is the normal wave speed and x is the angle between the beach and the wavefront.)
Anyway, this example shows that speeds that are faster than light are entirely possible after all. The reason this is not a problem is because, in this case, the point of contact between wave and beach is somehow "not real". Certainly the physical stuff, the water and the wave, aren't moving that fast. It's a sort of "virtual point" and this virtual point is carrying no information, and no mass, and no nothing really -- but still, its speed can easily be whatever you like.
And, in essentially the same sort of way, space itself has no substance exactly, and is as a result free to move at any speed -- including speeds faster than light, because nothing really is travelling, and no information is being carried. This is what happened during Inflation. Space itself expanded at a rate many times faster than the speed of light, but all the energy (and any matter) within it would have stayed travelling at normal speeds.
Really a couple of diagrams would have been helpful, but I hope the explanation above is useful.