Christmas In The Good Old Days
ChatterBank24 mins ago
No best answer has yet been selected by NetSquirrel. Once a best answer has been selected, it will be shown here.
For more on marking an answer as the "Best Answer", please visit our FAQ.Thanks for the video NetSquirrel You can do a similar thing yourself by sitting in a chair that will revolve holding a bike wheel by the axle (one hand each side). Get someone to spin the wheel and if you try to turn the axle you go round in circles. Great fun!
I think it all depends on what you mean by rotate. Eg does the moon rotate about the earth or orbit it? I'd say an object can only spin about an axis within itself, otherwise I'd call it turning. Back to what jenky said in his third post. I'm open to any other offers though :-)
as for visualizing the theory... (if you've got a program like mathematica you can go and visualize after some easy math. i don't, but the math i can try to explain). there is some formula describing a point on a sphere with sphere-coordinates (kugelkoordinaten, sorry, not native english, me) , using the radius and two angles. (look it up, thx). for a start, if two axes rotate at the same speed, a point on the sphere will describe a figure of eight placed on less than half of said sphere (as opposed to a circle of only one axis rotates. things get more interesting when one varies the spin-speeds (angle per time unit) THIS IS NOT TO SAY THAT IT GETS LESS COMPLICATED. BUT MORE INTERESTING. this is just a small theoretical contribution that may in time help understand the theory and its practical applications, something i certainly don't claim to do. for things do spin around two axes, the third usually being the plane of reference in 3d space and thus immobile. at least in theory.
Lets consider only two axis of rotation, perpendicular to each other. One along the poles and the other along the equator.
Angular velocity(vector) for the first motion is parallel to the line joining the poles and for the other motion it is perpendicular to the line joining the poles. So the resultant will be the addition of these angular velocities. This will give us a new angular velocity and hence a new sense of rotation along a new axis. But still it is very hard to visualise it.
Sorry, we can't find any related questions. Try using the search bar at the top of the page to search for some keywords, or choose a topic and submit your own question.